亚洲一区=区三区在线网站|国产亚洲日韩欧美在线看片|欧美 国产精品 一区|亚洲欧美激情精品一区二区

低溫18650 3500
無磁低溫18650 2200
過針刺低溫18650 2200
低溫磷酸3.2V 20Ah
21年專注鋰電池定制

石墨烯在中國為什么變成了騙局?

鉅(ju)大LARGE  |  點選量:106140次(ci)  |  2017年06月(yue)18日  

不過,盡管石墨烯的應用前景越來越被看好,另一種截然不同的說法也是斬釘截鐵:石墨烯在中國就是一個騙局。

2015年3月,中科院重慶綠色智能技術研究院宣布推出一款名為“影馳SETTLERα”的石墨烯手機,根據當時的宣傳,其透光率高達97%,手機充電速率提高了40%,電池壽命延長了50%,電池的能量密度也增加10%。因為和石墨烯沾邊,盡管這款手機只相當于千元級配置,售價也得以高達2499元。

8個月過去,這款石墨烯手機盡管彼時宣布首批推出3萬臺,卻一直未在市場銷售。

但人們可以買到其他可種各樣的石墨烯產品。比如新三板上市公司圣泉集團已經在市場推出了石墨烯襪子和內衣。根據該公司的宣傳,他們在產品中添加了生物質石墨烯“內暖”纖維,這是一種全新的智能多功能復合纖維,“具有激活免疫細胞、防護紫外線、改善微循環、抗菌抑菌、增溫增陽等特性,還可以除臭”。

根據該公司的宣傳介紹,他們將植物秸稈碳化提取石墨烯,利用石墨烯的超導性作為生產衣服的原料。他們計劃還將推出智能文胸,通過內置感應器測量女性胸部溫度細微變化,有效預防腫瘤及乳腺癌,還計劃應用到軍服上——目前,這些所謂的石墨烯產品價格不菲,一雙襪子的價格超過50元,一條內褲的價格接近300元,一條石墨烯腰帶的價格需近600元,而發熱服則賣到1700元以上。

“前幾年納米材料熱炒時,國內出現了很多‘納米+’的概念炒作,這次‘石墨烯’也是一樣,很多石墨烯產品就是一個彌天騙局。”國家863項目負責人、材料科學家、北京大學化學與分子工程學院教授其魯說。由于在新材料能源方面的貢獻,其魯亦被稱為我國鈷酸鋰、錳酸鋰電池正極材料的主要奠基人。

根據記者了解,石墨烯目前主要分兩種:單原子薄膜石墨烯以及石墨烯粉體。前者的制備主要是以甲烷、乙炔等含碳氣體為原料,利用化學氣相沉積的方式合成,和石墨或者秸稈沒有什么關系。

石墨烯粉體則是利用天然石墨,利用濃酸和強氧化劑進行氧化,然后采用膨脹熱處理還原得到,至于從秸稈中提取的石墨烯,號稱15斤玉米芯就能提取一斤的石墨烯,在諸多業內人士看來是聞所未聞。

除開騙局明顯的石墨烯內褲,為多家研究所和企業熱衷研發的“石墨烯電池”、“石墨烯鋰電池”同樣被指是在撒謊。

目前,石墨烯應用在電池領域的做法,一般是在鋰電池的正負極中,添加石墨烯材料。“這種做法顯然是誤導。”近日,清華能源互聯網研究員劉冠偉質疑“石墨烯電池”的文章在網上熱傳。

在這篇名為《傳說中的“石墨烯電池”技術,難道是一場彌天大謊?》文章中,劉冠偉一開始就給出了明確觀點:

石墨烯電池”這個技術接近于不存在,石墨烯只有在理論上能夠提高充放電速率,而對于容(能)量的提升基本沒有任何幫助(期望“石墨烯電池”可以解決手機/電動汽車續航的人要失望了),其噱頭意義遠大于實用價值。

劉冠偉稱,根據經典的電化學命名法,一般智能手機使用的鋰離子電池應該命名為“鈷酸鋰-石墨電池”。之所以稱為“鋰離子電池”,是因為鋰離子在其中起到主要作用。“嚴格意義上來講,石墨烯只是在電池中做輔助作用,因此不能將應用了石墨烯的電池,直接稱作‘石墨烯電池’。”

在劉冠偉看來,現在基本進入市場的,只有石墨烯作為“導電添加劑”應用到鋰電池中。但就連“添加劑”式的應用,也頗多質疑。

石墨烯可以做導電劑,促進鋰電池快充放,理論上能提高倍率性能,但若分散工藝不到位,混料不均,一切都是空中樓閣;另外,目前物美價廉的材料很多,并不一定非要使用價格昂貴的石墨烯。”

記者注意到,劉冠偉的觀點,得到了張元波、其魯、復旦大學高分子科學系教授盧紅斌、哈爾濱工業大學化工學院應用化學系教授袁國輝等諸多業內資深專家的認同。

“到現在誰能拿出數據嗎?誰家做出這樣的電池了嗎?”其魯也認為,“鋰電池的正極和負極都是層狀物的結構,所以在一定的外界條件下,才能形成從正極到負極的遷移。而石墨烯是一個單層的碳原子環狀結構,就是它本身的化學物理性質決定它,不會形成鋰電池單獨的負極材料。”

很多人為此在浪費生命?

對于業內專家的質疑,作為“中國石墨烯產業技術創新戰略聯盟”秘書長,李義春的說法是:“業界雖然有爭議,但科技創新,什么事情都可能發生,有些專家認為不可能的事情,好多都實現了,有些專家又過于武斷,但是我們要有開放的心態。”

截至目前,無法得知青島最新研發出的“世界領先石墨烯鋰電池”真面目,華為方面的回復是“對石墨烯有研究,但不會這么快作為商用。”而作為中科院上海硅酸鹽所“石墨烯超強電動車電池”團隊的負責人,黃富強的辯解則是“大家從不同角度會得出不同的結論,然而實質是同一個。”

事實上,就連因為發現石墨烯而獲得2010年諾貝爾獎的安德烈·蓋姆,對國內目前瘋狂熱炒的石墨烯同樣看不懂。2015年10月底,蓋姆在出席青島舉辦的一個石墨烯產品展示會上時,就不顧主辦方的臉色明確表示“包括石墨烯電池在內的許多應用產品目前來說也許存在炒作的嫌疑。”

在蓋姆出席會議的當天,由中國石墨烯產業技術創新戰略聯盟首發的《2015全球石墨烯產業研究報告》也一同發布,其顯示中國不僅2012年底研究石墨烯的論文發表數目位列全球第一,而且近三年專利數量迅升首位。

不過,蓋姆在接受中國媒體采訪時同樣不客氣地指出,許多已發表的石墨烯論文中,一半的研究會被廢棄掉。另一方面,許多專利,特別是產自大學的專利,其中90%并沒什么價值,99%的專利最終會作廢,維護這些專利也會花很多費用,很多人為此在浪費生命。

“中國雖然在石墨烯論文發表量上位居全球首位,但不少科研院所并不知道產業界到底要什么,科研和應用脫節問題突出。”清華大學深圳研究生院院長、碳材料專家康飛宇公開表示。

這些質疑,并不能讓中國石墨烯從業者的腳步有所停留。1月16日,常州西太湖科技產業園舉行石墨烯項目入駐簽約儀式,21個石墨烯項目集體落戶常州。常州西太湖科技產業園黨工委書記劉志峰表示,常州石墨烯產業正在向“打造一個百億規模的特色產業”目標邁進。

像常州這樣的石墨烯產業園在國內已有很多。根據記者了解,在重慶、無錫、青島、唐山等地,都已形成了相當規模的石墨烯產業園。而更多的石墨烯產業園,則有望在2016年相繼開花。

在常州,二維碳素科技有限公司一位內部人士對記者說,他們2011年在常州成立,到現在已經發展到200人的規模,2012年出品世界首個電容式石墨烯觸摸屏。最近兩年,他們還利用石墨烯薄膜的高熱輻射效率,研發一些可加熱衣物。他們研發的方向,還包括石墨烯復合材料、太陽能電池、可穿戴傳感器等。不過他承認,這些產品實際上和石墨烯關系不大。

比產業園、科研所、大學、企業更早嘗到甜頭的是資本市場。相關數據顯示,滬深兩市共有60家上市公司布局石墨烯業務。2015年8月中旬,位于江蘇的德爾家居宣布投資石墨烯超級鋰電池等項目,在描繪了“年營收增28億元、年凈利潤增4.5億元”的藍圖之后,這家搭上“石墨烯電池”概念的公司,股價猶如坐上了火箭,兩個多月漲幅達158.4%。

產業商業化路漫漫

“現在國內的石墨烯應用,真正做石墨烯的企業其實沒有幾家,很多都是原來做石墨等碳材料的企業,甚至完全不相關的企業打著石墨烯的旗號,或者炒作股票,或者爭取國家基金,真正做石墨烯并且真正能賺錢的企業幾乎沒有。”清華大學材料學院微納力學中心教授朱宏偉說。

而在劉冠偉看來,不僅是國內的很多石墨烯是騙局,國外項目炒作的也不少。在他那那篇質疑石墨烯電池的文章中,劉冠偉就表示“有石墨烯電池的西班牙Graphenano公司”無論是宣稱合作的三家德國汽車企業,還是在專利局網站,都找不到任何有效信息。

那么,被寄予厚望的“新材料萬能之王”,為何處于如此尷尬的爭議境地?

根據記者了解,原因有三方面:一方面,無論國內還是國外,在技術上都沒有找到獲得大面積單晶石墨烯的工業合成法,另一方面,在市場上石墨烯下游產業鏈尚未形成,對石墨烯需求最大的也僅僅是各大科研院所和實驗室,并沒有大量石墨烯投入產業化運營。

早在2010年,韓國成均館大學和三星公司的研究人員,就制造出由多層石墨烯和聚酯片基底組成的透明可彎曲顯示屏。當時,論文通訊作者、成均館大學教授洪秉熙就提出,他們的方法可用于制造基于石墨烯的太陽能電池、觸摸傳感器和平板顯示器。但他當時也承認,大規模制造和商業化還為時尚早——5年過去,洪秉熙的方法在韓國都還是停留在三星和成均館大學的實驗室。

最后一方面,是石墨烯制備成本問題。由于無法量產,石墨烯制備成本也一直居高不下,成本昂貴也阻礙了下游市場的產業化步伐。此前石墨烯價格高達5000元/克,比黃金還貴10幾倍。“那瓶貌不驚人的東西比黃金還貴,幾克石墨烯粉末就價值幾十萬元人民幣,我們坐飛機的時候都是分開幾個人進行運送,怕被安檢沒收。”一名做石墨烯研究的創業公司曾經如此形容。

在加拿大,Grafoid和新加坡國立大學成立了世界最大的石墨烯研究中心(NUS),并且在2014年啟動位于安大略省的全新生產基地,這個約占2萬平方的基地主要生產石墨烯粉,當時,該公司負責人表示他們能以低廉的價格大規模生產高品質的石墨烯。不過,1年多過去,這個基地并未有任何新的消息。

所以,真正阻撓石墨烯大規模應用的,主要還是技術問題。其中低成本、大規模、高品質石墨烯的一致性和可重復合成方法的開發,是最大的困難。

人們耳熟能詳的趣事,是安德烈·蓋姆用透明膠帶得到了石墨烯。但人們不知道的是,這種方法得到的石墨烯尺寸很小,一般在10微米-100微米之間,存在產率低和成本高的不足,不能滿足工業化和規模化生產要求。

后來,氧化石墨還原法是制備石墨烯最常用的方法之一。但這種方法得到的主要是石墨烯粉體,而且缺陷非常多,電學、力學性能都較差,需要用濃硫酸氧化石墨,其工業上廢液的處理是一個難題。

此后,人們想到制備石墨烯未必要使用石墨,只需要設法讓碳原子結成一層薄膜。化學氣相沉積法(CVD)應運而生,這種方法是將乙烯或乙炔等氣體導入到一個反應腔內,讓這些氣體在高溫下分解,經過冷卻后,碳原子就沉積在基底表面形成石墨烯。雖然CVD能滿足規模化制備大面積、高質量的石墨烯要求,但問題是,由于其成本較高和工藝復雜等缺點,限制了這種方法在石墨烯制備中的應用。

由于制備方法上巨大的差異,石墨烯粉體和CVD薄膜之間的價格也要相差上千倍。例如1克石墨烯粉體只需要不到10元,而1平方米石墨烯薄膜要幾十元到上百元,其重量其實不到1毫克。

還有一種主要方法——溶劑剝離法。由于整個液相剝離的過程沒有在石墨烯的表面引入任何缺陷,為其在微電子學、多功能復合材料等領域的應用提供了廣闊的應用前景,缺點同樣是產率很低。

因此,從應用的角度,石墨烯目前在國內外都是在講故事的階段。“除此之外,目前石墨烯在消費電子產品中的尺寸、均勻性和可靠性等工業標準還未確定,因此石墨烯在消費電子產品上的實際用途還未顯示出來。”朱宏偉認為,石墨烯目前可以在實驗室中做小規模器件,但批量生產與集成質量沒法保證。“起碼現在還看不到希望。”

事實上,就連蓋姆本人,對現在石墨烯目前的這種商業化方式也存保留意見,蓋姆認為石墨烯是一個引子,帶動了更廣泛二維材料的發展。但對于石墨烯來說,從物理學的角度,已經到了一個瓶頸,未來除非有更大的突破,很難有進一步的提升。

石墨烯發展大事記

2004年:安德烈.蓋姆和康斯坦丁.諾沃肖洛夫以簡單的膠帶機械剝離方法獲得了石墨烯。二人因此獲得了2010年諾貝爾物理學獎。

2009年12月:日本富士通研究所宣布成功用石墨烯制作晶體管。

2010年2月:IBM開發出石墨烯FET(場效應晶體管)。

2010年6月:三星與韓國成均館大學教授飯島澄男采用石墨烯制作出柔性透明電極。

2012年1月:江南石墨烯研究院及二維碳素等公司宣稱聯合研制成功全球首款手機用石墨烯電容觸摸屏。

2012年8月:諾基亞披露其研發部門在研究石墨烯光電傳感器。

2012年9月:索尼宣稱開發出用卷對卷工藝制造石墨烯。

2013年1月:中科院重慶研究院宣稱研制出國內首片15英寸的單層石墨烯。

2013年5月:江蘇常州二維碳素科技有限公司稱全球最大規模石墨烯透明導電薄膜生產線正式投產,年產能達3萬平方米。

2013年11月:常州第六元素材料科技股份有限公司年產100噸氧化石墨烯、石墨烯粉體生產線投產。

2014年4月:三星宣稱開發出在半導體晶圓上形成單晶石墨烯技術。

2014年7月:IBM宣布將在未來5年內投資30億美元用于石墨烯開發。

2015年:《中國制造2025》由國務院正式頒布,再次將石墨烯作為新能源提上日程。

相關鏈接:新材料之王的前世今生

碳是最重要的元素之一,它有著獨特的性質,是所有地球生命的基礎。純碳可以是堅硬的鉆石,也可以是柔軟的石墨。

由于這種材料是從石墨中制取的,而且包含烯類物質的基本特征——碳原子之間的雙鍵,所以稱為石墨烯。實際上石墨烯本來就存在于自然界,只是難以剝離出單層結構。石墨烯一層層疊起來就是石墨,厚1毫米的石墨大約包含300萬層石墨烯。層與層之間附著得很松散,容易滑動,使得石墨非常軟、容易剝落。鉛筆在紙上輕輕劃過,留下的痕跡就可能是幾層石墨烯。

科學家在20世紀40年代就對類似石墨烯的結構進行過理論研究,但在此后很長時間里,制取單層石墨烯的努力一直沒有成功,有人認為這樣的二維材料是不可能在常溫下穩定存在的。2004年10月,發表在美國《科學》雜志上的一篇論文推翻了這種認知。在英國曼徹斯特大學工作的安德烈·海姆和康斯坦丁·諾沃肖洛夫,用普通膠帶完成了他們的“魔術”。

他們用膠帶從石墨上粘下薄片,這樣的薄片仍然包含許多層石墨烯。但反復粘上10到20次之后,薄片就變得越來越薄,最終產生一些單層石墨烯。這個看上去非常簡單、一點兒也不高科技的方法,并不是他們的首創。在此之前就有人試過,但沒能辨識出單層石墨烯。

海姆和諾沃肖洛夫把剝離下來的薄片放在氧化硅基板上,光的干涉效應使薄片在顯微鏡下呈現彩色條紋,就像油膜在水面上產生的效果。利用這種效應,他們觀察到了單層石墨烯。就這樣,第一種二維晶體材料正式出現了。之后,人們又制備出一些其他二維材料,例如氮化硼和二硫化鉬的二維晶體。

石墨烯對物理學基(ji)礎研究有著特殊意義,它使(shi)一些此(ci)前只(zhi)能(neng)紙(zhi)上(shang)(shang)談兵的量子效應可以通過實驗(yan)來(lai)驗(yan)證,例(li)如電子無視障(zhang)礙、實現幽靈一般(ban)的穿越。但更令人(ren)感興趣的,是(shi)它那許多“極端(duan)”性質的應用前景。不過,這(zhe)種二維的碳到底會(hui)給人(ren)類世界帶來(lai)什么樣的改變,即使(shi)是(shi)因此(ci)戴上(shang)(shang)諾貝(bei)爾獎桂冠(guan)的研究者們,也無法預知(zhi)。

鉅大核心技術能力